verticale

Lo sviluppo delle tecnologie per la cattura della CO2 in impianti per la produzione di energia elettrica ed idrogeno

(in lingua Inglese)

- Study cases and main design bases
- Key design features: SC-PC with CO2 capture: Cansolv process, Oxy-combustion and CPU, IGCC with CO2 capture: UOP process (Selexol)
- Performance & TPC: Power production with and without CO2 capture, Specific Total Plant Cost, Hydrogen and Power co-production,
- Financial Analysis: CO2 avoidance cost, LCOH (for price of electricity= ~ 115 €/MWh), Near zero emission cases, Sensitivity of LCOE,
- Summary considerations

Scarica il PDF Scarica il PDF
Aggiungi ai preferiti Aggiungi ai preferiti


Atti di convegni o presentazioni contenenti case history
mcT Petrolchimico Milano novembre 2015 Tecnologie per il Petrolchimico e per il settore energetico

Pubblicato
da Benedetta Rampini
mcT Petrolchimico Milano 2015Segui aziendaSegui




Settori: 


Estratto del testo
Milano, 25 novembre 2015 Gli atti dei convegni e più di 4.000 contenuti su www.verticale.net © Amec Foster Wheeler 2015 Milan, 25 November 2015 Silvio Arienti, Power Process Director
Luca Mancuso, Process Director Advances in CO2 capture technologies in coal-fired power and hydrogen plants © Amec Foster Wheeler 2015 3 different process types are considered 2 © Amec Foster Wheeler 2015 List in alphabetical order:
'' Air Products '' Alstom '' Cansolv '' Chiyoda Corporation '' Foster Wheeler '' General Electric Energy '' IHI '' Johnson Matthey '' Mitsubishi Heavy Industries '' Shell '' UOP Introduction Acknowledgement Fruitful cooperation with various technology suppliers and licensors, which
provided an invaluable support for the success of the study 3 © Amec Foster Wheeler 2015 Agenda 1 2 3 4 5 Key design features Performance & TPC Financial Analysis Summary considerations Study cases and main design bases 4 © Amec Foster Wheeler 2015 Agenda 1 2 3 4 5 Key design features Performance & TPC Financial Analysis Summary considerations Study cases and main design bases 5 © Amec Foster Wheeler 2015 Type Case # Plant CO2 capture Key technological features Bo ile r- b a se d 1 SC-PC - Alstom wet limestone scrubbing FGD 2 SC-PC 90% Alstom wet limestone scrubbing FGD
CANSOLV solvent scrubbing 3 Oxy
SC-PC 90% FW''s CFB & FGD technology
Air Products'' cryogenic purification unit IGC C -b a se d 4.1 IGCC 90% Shel coal gasification process, RC
UOP SelexolTM solvent scrubbing 4.2 IGCC 90% General Electric, RSC
UOP Selexol solvent scrubbing 4.3 IGCC 90% MHI, air-blown
UOP Selexol solvent scrubbing H 2 & Po w e r 5.1 IGCC+PSA 90% Two (2) E-class gas turbines (130 MWe) 5.2 IGCC+PSA 90% Two (2) F-class (77 MWe) 5.3 Boiler+PSA 90% PSA off-gas boiler-based Study cases 6 © Amec Foster Wheeler 2015 ' Greenfield location in The Netherlands (EU): sea level and Tamb 9°C
' Eastern Australian bituminous coal: LHV is 25.87 MJ/kg (AR)
' Pulverised coal plants: 27 MPa/600°C/620°C
' IGCC plants: two state-of-the-art F-class, 50 Hz gas turbines
' Net power output of SC-PC without capture around 1,000 MWe
' SC-PC plants with CO2 have same thermal capacity
' CO2: P 11 MPa, O2 100 ppm, H2S 20 ppm, H2O 50 ppm
' Overal gaseous emissions Main design bases Item SC-PC cases(1) IGCC cases(2) NOx (as NO2) ' 150 mg/Nm3 ' 50 mg/Nm3 SOx (as SO2) ' 150 mg/Nm3 ' 10 mg/Nm3 Notes: (1) @ 6% O2 volume dry. (2) @ 15% O2 volume dry 7 © Amec Foster Wheeler 2015 Agenda 1 2 3 4 5 Key design features Performance & TPC Financial Analysis Summary considerations Study cases and main design bases 8 © Amec Foster Wheeler 2015 SC-PC with CO2 capture: Cansolv process
90% CO2 removal 2'50% Train Absorber intercooling
Lean flash mechanical
vapour recompression 9 © Amec Foster Wheeler 2015 Oxy-combustion and CPU
Air Products'' process 10 © Amec Foster Wheeler 2015 IGCC with CO2 capture: UOP process (Selexol) Source: http://www.uop.com/'document=uop-selexol-technology-for-acid-gas-removal&download=1 11 © Amec Foster Wheeler 2015 Agenda 1 2 3 4 5 Key design features Performance & TPC Financial Analysis Summary considerations Study cases and main design bases 12 © Amec Foster Wheeler 2015 Power production with and without CO2 capture Net electrical efficiency loss is about 9% points compared to the SC-PC case without capture (power production only) 44,1 35,2 35,7 35,1 34,9 34,8 26,5 28,5 30,5 32,5 34,5 36,5 38,5 40,5 42,5 44,5 Case 1 SCPC Case 2 SCPC w CCS Case 3 Oxy-SCPC & CPU Case 4.1 IGCC w CCS (Shel ) Case 4.2 IGCC w CCS (GE) Case 4.3 IGCC w CCS (MHI) NE E (L HV ) , % 13 © Amec Foster Wheeler 2015 Specific Total Plant Cost Twice the cost of the SCPC without capture TPC defined in general accordance with the White Paper ''Toward a common method of cost estimation for CO2 capture and storage at fossil fuel power plants' (March 2013), produced collaboratively by authors from EPRI, IEAGHG, MIT, IEA, GCCSI, Vattenfall et al. 0 500 1000 1500 2000 2500 3000 Case 1 SCPC Case 2 SCPC w CCS Case 3 Oxy-SCPC & CPU Sp ec ifi c To ta l Pl an t Co st , ' /kW e Utility Units CO2 compression CO2 capture Steam cycle FGD DeNox Boiler island ASU Solid handling 0 500 1000 1500 2000 2500 3000 3500 Case 4.1 Shel Case 4.2 GE Case 4.3 MHI Sp ec ifi c To ta l Pl an t Co st , ' /kW e Utility Units Combined Cycle CO2 compression SRU & TGT AGR SG treat & condit. ASU Gasification Solid handling 1447 2771 2761 3157 3074 3046 14 © Amec Foster Wheeler 2015 Hydrogen and Power co-production With same coal input, different designs produce different amounts of power and hydrogen 440 289 37 220600 324700 465700 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000 0 50 100 150 200 250 300 350 400 450 500 Case 5.1 large CC Case 5.2
smal CC Case 5.3 boilers NP O , M W e H2, Nm3/h 15 © Amec Foster Wheeler 2015 Hydrogen and power co-production
The higher the hydrogen production, the lower the TPC (and NPO) 0 500 1000 1500 2000 2500 3000 Case 5.1 H2 + CC (E-class) Case 5.2 H2 + CC (F6 equiv.) Case 5.3 H2 + Boiler To ta l P la nt C os t, M ' Utility Units Power Island PSA CO2 compression SRU & TGT AGR SG treat & condit. ASU Gasification Solid handling 2461 2390 2101 Lower capital weight of the Power Island 16 © Amec Foster Wheeler 2015 Agenda 1 2 3 4 5 Key design features Performance & TPC Financial Analysis Summary considerations Study cases and main design bases 17 © Amec Foster Wheeler 2015 Item Unit Data Coal cost '/GJ (LHV) 2.5 Discount Rate % 8 Plant life Years 25 Financial leverage % debt 100 Maintenance cost % of TCR 1.5% (SCPC) 2.5% (IGCC) Load factor % 90% (SCPC) 85% (IGCC) CO2 transport & storage cost '/t 10 CO2 emission cost '/t 0 Inflation Rate % constant Financial analysis Main macroeconomic assumptions 18 © Amec Foster Wheeler 2015 Levelized Cost Of Electricity SC-PC w/ CCS: ~ 93 '/MWh
IGCC w/ CCS: ~ 115 '/MWh
- 20 40 60 80 100 120 Case 1 Case 2 Case 3 Case 4.1 Case 4.2 Case 4.3 LC O E, ' /M W h Bituminous Coal: 2,5 '/GJ (LHV); Discount rate: 8% CO2 transport & storage: 10 '/t; 90% / 85% capacity factor (SC PC/gasif); Constant ', 2013. CO2 transport & storage Fuel Variable O&M Fixed O&M Capital 19 © Amec Foster Wheeler 2015 CO2 avoidance cost About 63 '/t for boiler based '' About 97 '/t for IGCCs 65 61 97 0 10 20 30 40 50 60 70 80 90 100 Case 2 SCPC w CCS Case 3 Oxy-SCPC & CPU Case 4.x IGCC w CCS CO 2 av oi dan ce co st , ' /t Reference Plant: Case 1 (SC-PC without CO2 capture) Bituminous Coal: 2,5 '/GJ (LHV); Discount Rate: 8% CO2 transport & storage: 10 '/t; 85% load factor; Constant ', 2013. 20 © Amec Foster Wheeler 2015 LCOH (for price of electricity= ~ 115 '/MWh) Lower for higher hydrogen production cases (higher capital of the Power Island not refunded by the higher power) - 2,00 4,00 6,00 8,00 10,00 12,00 14,00 16,00 18,00 20,00 Case 5.1 Case 5.2 Case 5.3 LC O H , c '/N m 3 Bituminous Coal: 2,5 '/GJ (LHV); Discount Rate: 8% CO2 transport & storage: 10 '/t; 85% load factor; Constant ', 2013. CO2 emissions cost CO2 transport & storage Fuel Variable O&M Fixed O&M Capital 19.5 18.3 17.4 21 © Amec Foster Wheeler 2015 54 25 50 48 -0,6 -0,4 -0,8 N/A -3,0 -2,5 -2,0 -1,5 -1,0 -0,5 0,0 -20 -10 0 10 20 30 40 50 60 70 80 90 Case 2 SCPC w biomass & CCS Case 3 Oxy-SCPC & CPU Case 4.2 IGCC w CCS Case 5.3.1 H2+Power w CCS Delta TPC, M' Delta NEE, % pt Near zero emission cases
Particularly favorable in oxy-combustion power plants 22 © Amec Foster Wheeler 2015 Sensitivity of LCOE (post combustion capture) 23 © Amec Foster Wheeler 2015 Agenda 1 2 3 4 5 Key design features Performance & TPC Financial Analysis Summary considerations Study cases and main design bases 24 © Amec Foster Wheeler 2015 ' Study has provided an up-to-date assessment of performance and costs of various coal fired power and hydrogen plants, with and
without capture of the generated CO2 ' The three leading capture technologies lead to a worsening of both the plant performance (-9% pt. NEE) and the specific total plant cost
(twice the cost of the SCPC w/o capture) ' Only an incentive scheme ranging from 65 '/t (boiler-based cases) to 100 '/t (IGCC-based cases) of captured CO2 would make the investment economical y viable Summary considerations CO2 capture at coal-fired power and hydrogen plants 25 © Amec Foster Wheeler 2015


© Eiom - All rights Reserved     P.IVA 00850640186