verticale

Nuovi paradigmi di interazione uomo-macchina nel controllo degli impianti industriali: opportunità e sfide nell’era 4

INDUSTRY 4.0 – SMART FACTORY
Industria 4.0: Le tecnologie abilitanti
ROBOT COLLABORATIVI …… E LORO PROGRAMMAZIONE
REALTÀ AUMENTATA
REALTÀ VIRTUALE
AMBIENT INTELLIGENCE (AmI)
INDUSTRIAL IoT

Scarica il PDF Scarica il PDF
Aggiungi ai preferiti Aggiungi ai preferiti


Atti di convegni o presentazioni contenenti case history
SAVE ottobre 2018 Dagli indossabili alla realtà virtuale: la tecnologia a supporto della centralitàdell'operatore

Pubblicato
da Supporto Verticale
SAVE 2018Segui aziendaSegui




Settori: 

Parole chiave: 


Estratto del testo
Veronafiere 17-18 ottobre 2018 Vi aspettiamo a mcT Petrolchimico Milano, 29 novembre 2018 Cogenerazione Termotecnica Industriale Pompe di Calore 27 ottobre Cogenerazione Termotecnica Industriale Pompe di Calore Alimentare Alimentare Petrolchimico Alimentare 28 ottobre Alimentare Petrolchimico Alimentare Alimentare Petrolchimico Visione e Tracciabilit 28 ottobre Luce Energia Domotica LED Luce Energia Domotica LED Petrolchimico Alimentare Petrolchimico Petr NUOVI PARADIGMI DI INTERAZIONE UOMO-MACCHINA NEL CONTROLLO DEGLI IMPIANTI INDUSTRIALI: OPPORTUNIT E SFIDE NELL'ERA 4.0 Daniela Fogli SAVE 2018, 17 Ottobre 2018 INDUSTRY 4.0 ' SMART FACTORY INTERAZIONE UOMO-MACCHINA 4 Industria 4.0: Le tecnologie abilitanti 1 2 3 4 5 9 8 7 6 ' Robot collaborativi interconnessi e rapidamente programmabili ' Simulazione tra macchine interconnesse per ottimizzare i processi ' Integrazione informazioni lungo la catena del valore dal fornitore al consumatore ' Realt aumentata a supporto dei processi produttivi ' Stampanti in 3D connesse a software di sviluppo digitali Simulation Horizontal/
Vertical
Integration
Augmented
Reality
Additive
Manufacturing
' Comunicazione multidirezionale tra processi produttivi e prodotti ' Analisi di un' ampia base dati per ottimizzare prodotti e processi produttivi ' Gestione di elevate quantit di dati su sistemi aperti ' Sicurezza durante le operazioni in rete e su sistemi aperti Industrial
Internet
Big Data and
Analytics
Cloud Cyber-
security
Advanced Manufact. Solutions ROBOT COLLABORATIVI ' ' E LORO PROGRAMMAZIONE REALT AUMENTATA ' Immergere l'informatica nel mondo reale piuttosto che cercare di
sostituirlo come nella Realt Virtuale ' L'utente interagisce con un ambiente di oggetti reali, che diviene il
legame con una rete di calcolo
' Scopo: permettere agli utenti di trarre vantaggio dalla loro destrezza e
capacit nell'uso degli strumenti tradizionali e contemporaneamente
trarre vantaggio dalla potenza degli strumenti in rete MODI PER OTTENERE SISTEMI DI REALT AUMENTATA ' Aumentare l'utente AUMENTARE L'UTENTE C O R P O R A T E T E C H N O L O G Y 10 Siemens AG, CT IC 7, Carsten Wittenberg, 4. Juli 2004 Information & Communications User Interface Design ' and tomorrow SIEMENS AG 06-08/05/17 35 simone.zanoni@unibs.it Industry 4.0 - Impacts on Energy Efficiency and Maintenance Augmented reality for maintenance Use of head-mounted displays (HMDs) showing a set of virtual instructions (computer
graphics overlaid on the real view of the system to repair) - Augment a mechanic's natural view with text, arrows and animated sequences
- Label ing of components
- Real time diagnostic data
- Gesture tracking
- Safety warnings
- Allows off-site col aboration Introduction Energy Efficiency Maintenance MODI PER OTTENERE SISTEMI DI REALT AUMENTATA ' Aumentare l'utente ' Aumentare gli oggetti (e.g. le macchine) AUMENTARE GLI OGGETTI http://www.mmsonline.com/articles/bearing-down-on-industry-40 I dati vengono raccolti da sensori incastonati nelle macchine e valutati
localmente per aiutare gli operatori a prendere decisioni sullo stato corrente
delle macchine e sulla produzione MODI PER OTTENERE SISTEMI DI REALT AUMENTATA ' Aumentare l'utente ' Aumentare gli oggetti (e.g. le macchine) ' Aumentare l'ambiente AUMENTARE L'AMBIENTE REALT VIRTUALE ' Simulazione del mondo o di parte di esso attraverso il computer ' VR immersiva: ' utente con elmetto e/o occhiali e guanti, isolato in un ambiente virtuale
(CAVE - Cave Automatic Virtual Environment), che si muove e interagisce
con oggetti virtuali ' Desktop VR: ' alternativa a basso costo, immagini 3D vengono proiettate su un normale
monitor e l'interazione avviene con mouse, tastiera, joystick (es. simulatori
di volo, giochi interattivi) CARATTERISTICHE DELLA VR IMMERSIVA ' La prospettiva coerente con i movimenti del a testa offre una naturale
interfaccia per la navigazione nello spazio tridimensionale (per
guardarsi attorno, camminare, volare) ' La vista stereoscopica arricchisce la percezione di profondit e il
senso del o spazio ' Il mondo virtuale si presenta in scala reale e si relaziona correttamente
alle dimensioni umane ' Interazioni realistiche con oggetti virtuali tramite guanti e dispositivi
simili per manipolare e control are mondi virtuali ' Illusione convincente di essere totalmente immersi in un mondo artificiale
pu essere arricchita da tecnologie uditive, tattili, etc. ESEMPI DI APPLICAZIONI DELLA VR: ADDESTRAMENTO DELL'OPERATORE INTERNET OF THINGS (IoT) ' 'Things having identities and virtual personalities operating in smart places
using intelligent interfaces to connect and communicate within social, environmental,
and user contexts' [EPoSS, 2008] ' Ambiente computazionale globale e invisibile supportato da sensori
intelligenti, video-camere, software, data center distribuiti nel mondo che
permette: ' lifelogging ' comportamento autonomo e proattivo ' consapevolezza del contesto (Who ' What ' When ' Where ' Why) INDUSTRIAL IoT ' Per monitorare variabili fisiche che indicano le condizioni della
macchina ' Supporto diagnostico, manutenzione preventiva e predittiva,
controllo remoto ' Ridotti costi di manutenzione ' Migliore customer service 06-08/05/17 33 simone.zanoni@unibs.it Industry 4.0 - Impacts on Energy Efficiency and Maintenance Maintenance 4.0 IoT allows to monitor the physical variables that are indicative
of the machine condition (or health status of the machine) so
that it can be operated and maintained safely and
economically. The current automation of these techniques has also extended
the meaning of 'monitoring' to real-time acquisition,
processing and data storage
. Proactive approach oriented to the achievement of cost
savings, improved profitability, improved service levels for
customer satisfaction, improved health, safety and
environmental performance and adherence to the company's
social responsibility Aim: reduced maintenance cost and improved customer
service - Phase 1: Diagnostic support, Preventive Maintenance, Commissioning - Phase 2: Predictive Maintenance, Remote Control
- Phase 3: Product lifecycle management (PLM) integration Introduction Energy Efficiency Maintenance 06-08/05/17 33 simone.zanoni@unibs.it Industry 4.0 - Impacts on Energy Efficiency and Maintenance Maintenance 4.0 IoT allows to monitor the physical variables that are indicative
of the machine condition (or health status of the machine) so
that it can be operated and maintained safely and
economically. The current automation of these techniques has also extended
the meaning of 'monitoring' to real-time acquisition,
processing and data storage
. Proactive approach oriented to the achievement of cost
savings, improved profitability, improved service levels for
customer satisfaction, improved health, safety and
environmental performance and adherence to the company's
social responsibility Aim: reduced maintenance cost and improved customer
service - Phase 1: Diagnostic support, Preventive Maintenance, Commissioning - Phase 2: Predictive Maintenance, Remote Control
- Phase 3: Product lifecycle management (PLM) integration Introduction Energy Efficiency Maintenance AMBIENT INTELLIGENCE (AmI) 'Ambient Intel igence is the vision of a future in which environments support
people inhabiting them. This envisaged environment is unobstrusive,
interconnected, adaptable, embedded, and intelligent' [Sadri, 2011] Oltre ad essere consapevole del contesto, impara dal comportamento
degli utenti e si adatta, riconosce ed esprime emozioni INTERFACCE PER BIG DATA ANALYTICS Interfacce per
sistemi mobili Interfacce web E L'OPERATORE' CIE46 Proceedings, 29-31 October 2016, Tianjin / China, ISSN 2164-8670 CD-ROM, ISSN 2164-8689 ON-LINE [BEST PAPER AWARD] 3 event, measure-based and/or modeling-based) in order to allow a dynamic and seamless transition
of functions (tasks) allocation between humans and machines, always aiming for the operator inclusiveness without compromising the production objectives [5]. 2 TOWARDS AN OPERATOR 4.0 TYPOLOGY
This section presents an Operator 4.0 typology that depicts how the Industry 4.0 technologies can assist operators to become 'smarter operators' in their future factory workplaces (see Figure 1),
from a social manufacturing perspective. Furthermore, it is important to mention that these types of Operators 4.0 may exist on the shop-floor as either single- or hybrid- types. A selection of various
augmentations of the original human capabilities are presented below; note however, that there might be multiple other aspects that are part of the Operator 4.0. Those augmentations do not only come in a variety of levels but also can be combined. It is also very likely that the future
Operator 4.0 may only be augmented in one specific area whereas the other aspects are neglected. In some cases that will not even be possible (e.g. augmented reality functionality necessarily needs
a 'connected operator' to perform). Figure 1: Operator 4.0 Typology 2.1 Operator + Exoskeleton = Super-Strength Operator [physical interaction]
Powered (Industrial) Exoskeletons are wearable lightweight, flexible and mobile, representing a
type of biomechanical system where the human-robotic exoskeleton powered by a system of motors, pneumatics, levers or hydraulics works cooperatively with the operator to allow for limb movement, increased strength and endurance. The idea of wearable exoskeletons has been around
for decades in industry, aiming to use powered mechanics to increase the strength of a human operator for effort-less manual functions (tasks) (e.g. [12]).
Powered exoskeletons can help to reduce the trade-offs between manual and automated operations in production systems - in other words, between flexibility and efficiency in balanced automation
systems as well as to increase the social sustainability of factories in the long-term, especially with the outlook of a larger proportion of elderly workers due to changing demography. Daz, D. R., et al. (2016). Towards An Operator 4.0 Typology: A Human-Centric Perspective On
The Fourth Industrial Revolution Technologies. CIE46, Tianjin, China. AIUTARE A GESTIRE LA COMPLESSIT L'intelligenza dei sistemi dovrebbe includere rappresentazione degli obiettivi e dei piani umani (produttivit, salute, sicurezza, inclusione sul lavoro, soddisfazione, etc ') meeting the requirements of the users and thus to learn
more about them. The process model user-centered design (UCD) has been successfully implemented in other fields of engi-
neering and computer science in the recent years. One
particular prominent example is the field of e-commerce.
There, interfaces have to be designed in such a way that
they can be operated by very heterogeneous user groups
with little to no training, in varying interaction contexts
and environments (from the office to the bus stop) and
with only little knowledge about the users themselves. The
general situation is similar in the case of Industrie 4.0, al-
though operators of machines should have experienced at
least some training and are, in principle, known. How-
ever, there are other challenges, which we will review in
the following section, that make user interface design a
difficult task. Fig. 1 outlines the aim of this paper. System manufac- turers, referred to as developers from now on, build sys-
tems compliant to Industrie 4.0. These are used by
operators, service and maintenance personnel, control-
lers, etc., which we will refer to as users. Ideally, Indus-
trie 4.0 systems will lead to a decrease in the total
number of required manual service operations, however,
at the same time this will increase the complexity the in-
dividual service operator is faced with (e.g., larger
amounts of different components). Usually developers
and users operate on different levels; there is no interac-
tion or connection between them. UCD now helps to transfer the users' needs and requirements to the devel-
opers. An empathic link is build; thereby the developers
can provide components for Industrie 4.0 fitting better
to the user groups. The described challenges in mind, in the subsequent sections, we will investigate how methodological knowl-
edge about UCD that has been gained in the area of
e-commerce can be transferred to the design of user in-
terfaces in Industrie 4.0. Our approach is an application
of ISO 9241-210 adapted for agile development processes
in the context of Industrie 4.0 (see also Fig. 2). It is a
lightweight combination of methods. In particular, we
will describe a method called 'personas' for modeling the Fig. 1. Human'machine interfaces in Industrie 4.0 have to be designed to meet a range of user groups operating on different levels of
abstraction, from machine-oriented human'machine interface to high-level control systems. Mental models and know how about
users' behavior can build a bridge between the otherwise separated groups, helping to establish an empathic link between system
manufacturers and users. Fig. 2. Lightweight process model for UCD as specified by ISO
9241-210 [12]. Vol. 104, No. 5, May 2016 | Proceedings of the IEEE 987 Pfeiffer et al.: Empowering User Interfaces for Industrie 4.0 Progettazione centrata sull'umano ' E TANTI UMANI DIVERSI meeting the requirements of the users and thus to learn
more about them. The process model user-centered design (UCD) has been successfully implemented in other fields of engi-
neering and computer science in the recent years. One
particular prominent example is the field of e-commerce.
There, interfaces have to be designed in such a way that
they can be operated by very heterogeneous user groups
with little to no training, in varying interaction contexts
and environments (from the office to the bus stop) and
with only little knowledge about the users themselves. The
general situation is similar in the case of Industrie 4.0, al-
though operators of machines should have experienced at
least some training and are, in principle, known. How-
ever, there are other challenges, which we will review in
the following section, that make user interface design a
difficult task. Fig. 1 outlines the aim of this paper. System manufac- turers, referred to as developers from now on, build sys-
tems compliant to Industrie 4.0. These are used by
operators, service and maintenance personnel, control-
lers, etc., which we will refer to as users. Ideally, Indus-
trie 4.0 systems will lead to a decrease in the total
number of required manual service operations, however,
at the same time this will increase the complexity the in-
dividual service operator is faced with (e.g., larger
amounts of different components). Usually developers
and users operate on different levels; there is no interac-
tion or connection between them. UCD now helps to transfer the users' needs and requirements to the devel-
opers. An empathic link is build; thereby the developers
can provide components for Industrie 4.0 fitting better
to the user groups. The described challenges in mind, in the subsequent sections, we will investigate how methodological knowl-
edge about UCD that has been gained in the area of
e-commerce can be transferred to the design of user in-
terfaces in Industrie 4.0. Our approach is an application
of ISO 9241-210 adapted for agile development processes
in the context of Industrie 4.0 (see also Fig. 2). It is a
lightweight combination of methods. In particular, we
will describe a method called 'personas' for modeling the Fig. 1. Human'machine interfaces in Industrie 4.0 have to be designed to meet a range of user groups operating on different levels of
abstraction, from machine-oriented human'machine interface to high-level control systems. Mental models and know how about
users' behavior can build a bridge between the otherwise separated groups, helping to establish an empathic link between system
manufacturers and users. Fig. 2. Lightweight process model for UCD as specified by ISO
9241-210 [12]. Vol. 104, No. 5, May 2016 | Proceedings of the IEEE 987 Pfeiffer et al.: Empowering User Interfaces for Industrie 4.0 T. Pfeiffer et al. (2016). Empowering User Interfaces for Industrie 4.0, Proceedings of the IEEE. CONCLUSIONI ' Nuovi modelli di business e di servizi, nuovi processi produttivi ' Uso efficiente del potenziale che nasce dalla collaborazione fra
umani e macchine ' Necessit di integrare le tecnologie future nell'operativit di
un'organizzazione cambiando le interfacce fra umani e macchine ' Ridurre la complessit, favorire l'inclusione ' Comprendere l'usabilit (user experience) come fattore di
qualit, promuovere la collaborazione interdisciplinare,
mettere gli utenti al centro GRAZIE PER L'ATTENZIONE! Prof.ssa Daniela Fogli Dipartimento di Ingegneria del 'Informazione Universit degli Studi di Brescia daniela.fogli@unibs.it


© Eiom - All rights Reserved     P.IVA 00850640186